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Abstract — This paper describes the capacitive pressure sensor design for biomedical applications like blood pressure 
measurement. The described pressure sensors provide high sensitivity even at low pressure range suitable for biomedical 
applications. Effects of varying different parameters on the pressure sensor performance have been studied. From the results, 
the pressure sensors with compatible parameters can be selected for specific requirements. These compact pressure sensors 
are made up of biocompatible materials and can be implanted easily inside body to be used for RF telemetry purpose. 
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1 INTRODUCTION                                                                     

ENSORS are one of the most active applications of 
MEMS. With the achievements in miniaturization of 
MEMS devices, sensor’s applications have expanded 

not only for industry purpose but also for biomedical 
applications. Pressure sensors are one of the various 
types of sensors, where pressure is to be measured. One 
of the types of pressure sensor is capacitive pressure 
sensor. The capacitive pressure sensing technique’s per-
formance in respect of sensitivity is better than rest all 
other microsensing techniques viz. piezoresistive micro-
sensing, piezoelectric microsensing and resonant micro-
sensing. And so is applicable to wide range of applica-
tions like automotive applications, industrial applica-
tions, biomedical applications and general & consumer 
applications. The capacitive microsensing technique 
utilizes the diaphragm-deformation-induced capacit-
ance change to convert the information of pressure into 
electrical signals. The capacitance is computed in a 3D 
model using C = ε * ∫ (1/h) dA [1] 
     As MEMS technology is promising to achieve com-
pact sizes, here we have optimized the capacitive pres-
sure sensor to be implanted inside the body for blood 
pressure measurement [2] like applications. MEMS 
technology offers the possibility to realize devices of 
hundreds of micrometers and diaphragms of thickness 1 
micrometer only. Therefore these capacitive pressure 
sensors are required to respond very less changes in 
applied pressure. Some of the desired features to these 
capacitive pressure sensors include high sensitivity at 

low pressures, biocompatibility and low profile. Using 
contamination insensitive [3] manufacturing process, 
smooth contacts [4] and additional touch points [1] sen-
sitivity of capacitive pressure can be further improved. 
     In this paper, effect of varying different paramaters of 
the capacitive pressure sensors for biomedical applica-
tions in pressure range from 0 to twice of atmospheric 
pressure has been studied. 
     In this paper we demonstate three different possible 
geometries for capacitive pressure sensor are circular, 
square & rectangular. These pressure sensors are de-
signed by having a silicon substrate, a silica bridge and a 
biocompatible diaphragm [5]. Details of the pressure 
sensors design and effect of varying geometry, surface 
area of diaphragm [6], diaphragm thickness, diaphragm 
dimensions and diaphragm material are described. 

2 PRESSURE SENSOR DESIGN AND SIMULATION 
RESULTS 
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Fig.1  Subdomains of circular capacitive pressure sensor 
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2.1 Design Specifications 
The design of the circular capacitive pressure sensor 
analysed is shown in figure. On an silicon substrate 
of radius 283 µm and thickness 500 µm, a silica bridge 
has been mounted of thickness 300 µm on substrate 
perimeter of 30 µm width. A thin silicon diaphragm 
of 2 µm and 253.885 µm radius is than placed on 
mounted bridge to create a vaccum compartment 
beneath it.  
The pressure sensor’s performance with three differ-
ent geometries is studied as shown in Fig. 2 in accor-
dance with the following Table 1 

 
TABLE 1 

DIMENSIONS OF THE PRESSURE SENSOR 
 

Geometry 
 

Subdomain Circular     Square Rectangu-
lar 

Substrate Radius 283 
Thickness 500 

Side 500 
Thickness 500 

Length 860 
Breadth 300 

Thickness 500 

Bridge       Width 30 
Thickness 300 

Width 25 
Thickness 300 

Width 25 
Thickness 300 

Diaphragm 
Radius 
253.885 

Thickness 1 

Side 450 
Thickness 1 

Length 810 
Breadth 250 
Thickness 1 

 
2.2 Results 
 

 

 

 

 

 

 

 

 
 
 

 
The Simulation is carried out by COMSOL Multi-

physics 3.5 software, where capacitance is computed 
from the knowledge of deformation, induced by ap-
plied pressure, using expression C = (ε * 4)/(50µm + 
W2). Fig. 2 shows the comparative change in capacit-
ance as applied pressure is varied for three geometries 
circular, square and rectangular of same surface area. 
Fig.3, Fig.4 and Fig.5 shows the Stress distribution for 

circular, square and rectangular geometry respectively. 
Here we can see that for the same surface area of diaph-
ragm and silicon material used, the circular geometry 
performs best among all three, regarding sensitivity in 
the pressure range from 0 to 200kPa.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Fig. 4 Stress Distribution for Square Geometry 

 

Fig. 5 Stress Distribution for Rectangular Geometry 

0 50 100 150 200142

144

146

148

150

152

154

C
ap

ac
ita

nc
e 

(fF
)

Pressure (kPa)

 Circular
 Square
 Rectangular

 
Fig. 2 Performance Graph of Capacitive Pressure Sensors 

 
Fig. 3 Stress Distribution for Circular Geometry 
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Fig. 7 Performance graph of square geometry for diaphragm 
thickness variation 
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Fig. 8 Performance graph of rectangular geometry for diaph-
ragm thickness variation 
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Fig. 6 Performance graph of circular geometry for diaphragm 
thickness variation 
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Fig. 9 Performance graph of circular geometry for diaphragm 
material variation 
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Fig. 10 Performance graph of square geometry for diaphragm 
material variation 
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Fig. 11 Performance graph of rectangular geometry for diaph-
ragm material variation 
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Fig. 6, Fig. 7 and Fig. 8 shows the results of varying diaph-
ragm’s thickness from 1 µm to 5 µm for all three geometries 
considered. 
Fig. 9, Fig. 10 and Fig. 11 shows the results of capacitive 
pressure sensor performance for four different biocompatible 
diaphragm materials for all three geometries considered. 
Fig. 12 and Fig. 13 show the results of capacitive pressure 
sensor performance for different surface areas of circular and 
square geometry. 
Fig. 14 shows the results of capacitive pressure sensor per-
formance for different dimensions of rectangular geometry. 
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4 CONCLUSION 
Three different geometries of capacitive pressure sen-
sor have been demonstrated. The capacitive pressure 
sensors are optimized regarding geometry, diaph-
ragm material, diaphragm thickness, diaphragm sur-
face area and diaphragm dimension ratio. The opti-
mized sensors are suitable for biomedical applica-
tions in the low pressure range.  
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Fig. 12 Performance graph of circular geometry for diaphragm 
surface area variation 
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Fig. 14 Performance graph of rectangular geometry for diaph-
ragm dimension ratio variation 
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Fig. 13 Performance graph of square geometry for diaphragm 
surface area variation 


